Compilation of selected papers published on Permian topics in 2022

Stratigraphy and sedimentology

Arefifard S. & Baud A. (2022). Depositional environment and sequence stratigraphy architecture of continuous Upper Permian and Lowermost Triassic deep marine deposits in NW and SW Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 603, 111187. https://doi.org/10.1016/j.palaeo.2022.111187

Cheng C., Li S., Xie X., Shen Y., Ying P., Manger W.L. & Cao T. (2022). Sedimentary evolution and sea-level fluctuation of a Paleo-Tethyan Permian carbonate-dominated succession from central China. Sedimentary Geology, 440, 106244. https://doi.org/10.1016/j.sedgeo.2022.106244

Davydov V.I., Budnikov I.V., Kutygin R.V., Nurgalieva N.G., Biakov A.S., Karasev E.V., Kilyasov A.N. & Makoshin V.I. (2022). Possible bipolar global expression of the P3 and P4 glacial events of eastern Australia in the Northern Hemisphere: Marine diamictites and glendonites from the middle to upper Permian in southern Verkhoyanie, Siberia. Geology, 50(8), 874-879. https://doi.org/10.1130/G50165.1

Fan M., Alsalem O.B., Tian H., Kasprowicz F. & Valencia V.A. (2022). Paleozoic evolution and heterogeneity of sediment provenance in the Permian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 588, 110820. https://doi.org/10.1016/j.palaeo.2021.110820

Guo W., Tong J., He Q., Hounslow M.W., Song H., Dal Corso J., Wignall P.B., Ramezani J., Tian L. & Chu D. (2022). Late Permian–Middle Triassic magnetostratigraphy in North China and its implications for terrestrial-marine correlations. Earth and Planetary Science Letters, 585, 117519. https://doi.org/10.1016/j.epsl.2022.117519

Ito T., Ogawara T., Katori T., Matsuoka A., Kurihara T., Nakamura Y, Yoshida T., Suzuki K. & Kawaguchi, Y. (2022). Permian spicular chert from the east of Mt. Asahi-dake, Itoigawa City, Niigata Prefecture, Japan. Science Reports of Niigata University (Geology), (37), 1-14.

Liu A., Yang J., Cheng L. & Ren J. (2022). Climate-Controlled Coastal Deposition of the Early Permian Liangshan Formation in Western South China. Frontiers in Earth Science, 10, 888012. https://doi.org/10.3389/feart.2022.888012

Meng Q., Xue W., Chen F., Yan J., Cai J., Sun Y., Wignall P.B., Liu K., Liu Z. & Chen D. (2022). Stratigraphy of the Guadalupian (Permian) siliceous deposits from central Guizhou of South China: Regional correlations with implications for carbonate productivity during the Middle Permian biocrisis. Earth-Science Reviews, 228, 104011. https://doi.org/10.1016/j.earscirev.2022.104011

Mercuzot M., Bourquin S., Pellenard P., Beccaletto L., Schnyder J., Baudin F., Ducassou C., Garel S. & Gand G. (2022). Reconsidering Carboniferous–Permian continental paleoenvironments in eastern equatorial Pangea: facies and sequence stratigraphy investigations in the Autun Basin (France). International Journal of Earth Science, 111 (5), 1663-1696. https://ui.adsabs.harvard.edu/abs/2022IJEaS.111.1663M/abstract

Shen B., Shen S., Wu Q., Zhang S., Zhang B., Wang X., Hou Z., Yuan D., Zhang Y., Liu F., Liu J., Zhang H., Shi Y., Wang J. & Feng Z. (2022). Carboniferous and Permian integrative stratigraphy and timescale of North China Block. Science China Earth Sciences, 1-29. https://doi.org/10.1007/s11430-021-9909-9

Shen S.Z., Yuan D.X., Henderson C.M., Lambert L.L., Zhang Y.C., Erwin D.H., Ramezani J., Wang X.D., Zhang H., Wu Q., Wang W.Q., Hearst J.M., Chen J., Wang Y., Qie W.K., Qi Y.P. & Wardlaw B.R. (2022). The Global Stratotype Section and Point (GSSP) for the base of the Capitanian Stage (Guadalupian, Middle Permian). Episodes Journal of International Geoscience, 45(3), 309-331. https://doi.org/10.18814/epiiugs/2022/022004

Wainman C.C., McCabe P.J. & Crowley J.L. (2022). New insights on the age and stratigraphy of the Cisuralian succession in the Cooper Basin, Australia, based on U–Pb CA-TIMS dating of volcanic air-fall tuffs. Australian Journal of Earth Sciences, 69(4), 497-508. https://doi.org/10.1080/08120099.2022.1996457

Wistort Z., Ritterbush K. & Hood S.C. (2022). Cessation of a subtropical glass ramp during the Permian chert event: Murdock Mountain Formation, western USA. Palaios, 37(5), 129-144. https://doi.org/10.2110/palo.2021.034

Geochemical proxies and palaeoclimate

Arefifard S., Payne J.L. & Rizzi M. (2022). Guadalupian carbon isotope stratigraphy indicates extended interval of carbon cycle stability. American Journal of Science, 322(9), 1019-1046. https://doi.org/10.2475/09.2022.01

Cao C., Bataille C.P., Song H., Saltzman M.R., Tierney Cramer K., Wu H., Korte C., Zhang Z. & Liu X.M. (2022). Persistent late Permian to Early Triassic warmth linked to enhanced reverse weathering. Nature Geoscience, 15(10), 832-838. https://doi.org/10.1038/s41561-022-01009-x

Cheng C., Wang X., Li S., Cao T., Chu Y., Wei X., Li M., Wang D. & Jiang X. (2022). Chemical weathering indices on marine detrital sediments from a low-latitude Capitanian to Wuchiapingian carbonate-dominated succession and their paleoclimate significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 606, 111248. https://doi.org/10.1016/j.palaeo.2022.111248

Fang Q., Wu H., Shen S.Z., Fan J., Hinnov L.A., Yuan D., Zhang S., Yang T., Chen J. & Wu Q. (2022). Astronomically paced climate evolution during the Late Paleozoic icehouse-to-greenhouse transition. Global and Planetary Change, 213, 103822. https://doi.org/10.1016/j.gloplacha.2022.103822

Garbelli C., Angiolini L., Posenato R., Harper E.M., Lamare M.D., Shi G.R. & Shen S.Z. 2022. Isotopic time-series (δ13C and δ18O) obtained from the columnar layer of Permian brachiopod shells are a reliable archive of seasonal variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 607, 111264. https://doi.org/10.1016/j.palaeo.2022.111264

Gliwa J., Wiedenbeck M., Schobben M., Ullmann C.V., Kiessling W., Ghaderi A., Struck U. & Korn D. (2022). Gradual warming prior to the end‐Permian mass extinction. Palaeontology, 65(5), e12621. https://doi.org/10.1111/pala.12621

Gong Z., Zhang M., Li J. & Huang C. (2022). Late Permian~ 6 My cooling induced by basaltic weathering of the Emeishan large igneous province: Evidence from interbasaltic paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 111305. https://doi.org/10.1016/j.palaeo.2022.111305

Huang H., Huyskens M.H., Yin Q.Z., Cawood P.A., Hou M., Yang J., Xiong F., Du Y. & Yang C. (2022). Eruptive tempo of Emeishan large igneous province, southwestern China and northern Vietnam: Relations to biotic crises and paleoclimate changes around the Guadalupian-Lopingian boundary. Geology, 50(9), 1083-1087. https://doi.org/10.1130/G50183.1

Lv D., Wang L., Isbell J.L., Lu C., Li P., Wang Y. & Zhang Z. (2022). Records of chemical weathering and volcanism linked to paleoclimate transition during the Late Paleozoic Icehouse. Global and Planetary Change, 217, 103934. https://doi.org/10.1016/j.gloplacha.2022.103934

Montañez I.P. (2022). Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record. In Lucas, S. G., Schneider, J. W., Wang, X. and Nikolaeva, S. (eds) 2022. The Carboniferous Timescale. Geological Society, London, Special Publications, 512, 213–245. https://doi.org/10.1144/SP512-2021-124

Poujol M., Mercuzot M., Lopez M., Bourquin S., Bruguier O., Hallot E. & Beccaletto L. (2023). Insights on the Permian tuff beds from the Saint-Affrique Basin (Massif Central, France): an integrated geochemical and geochronological study. Comptes Rendus. Géoscience, 355(S2), 1-25. https://doi.org/10.5802/crgeos.184

Sun F., Hu W., Cao J., Wang X., Zhang Z., Ramezani J. & Shen S. (2022). Sustained and intensified lacustrine methane cycling during Early Permian climate warming. Nature communications, 13(1), 1-10. https://doi.org/10.1038/s41467-022-32438-2

Sun S., Chen A., Ogg J.G., Hou M., Yang S., Xu S., Yang D. & Chen H. (2022). Continental weathering indices recorded in low-latitude carbonates unveil the P3 glacial of the Late Paleozoic Ice Age. Global and Planetary Change, 103994. https://doi.org/10.1016/j.gloplacha.2022.103994

Sun S., Chen A., Hou M., Yang S., Ogg J.G., Zou H., Xu S., Li Q., Huang Y., Li R. & Chen H. (2022). Rapid climatic fluctuations during the Guadalupian-Lopingian transition: Implications from weathering indices recorded in acid-insoluble residues of carbonate rocks, South China. Journal of Asian Earth Sciences, 230, 105222. https://doi.org/10.1016/j.jseaes.2022.105222

Wang Y., Cao J., Zhang B., Liao Z., Zhang B., Liu J. & Shi C. (2022). Genesis of the Wangpo bed in the Sichuan Basin: Formation by eruptions of the Emeishan large igneous province. Palaeogeography, Palaeoclimatology, Palaeoecology, 594, 110935. https://doi.org/10.1016/j.palaeo.2022.110935

Wang W.Q., Zhang F., Shen S.Z., Bizzarro M., Garbelli C., Zheng Q.F., Zhang Y.C., Yuan D.X., Shi Y.K., Cao M. & Dahl T.W. (2022). Constraining marine anoxia under the extremely oxygenated Permian atmosphere using uranium isotopes in calcitic brachiopods and marine carbonates. Earth and Planetary Science Letters, 594, 117714. https://doi.org/10.1016/j.epsl.2022.117714

Zhang H. & Torsvik T.H. (2022). Circum-Tethyan magmatic provinces, shifting continents and Permian climate change. Earth and Planetary Science Letters, 584, 117453. https://doi.org/10.1016/j.epsl.2022.117453

Zhang M., Gong Z., Zhou Y., Liu Y., Li J. & Huang C. (2022). Cooler Equatorial climate in the late Lopingian estimated from Paleosols developed on Emeishan Basalts. The Journal of Geology, 130(1), 23-44. https://doi.org/10.1086/718351

Zhang S.H., Shen S.Z. & Erwin D.H. (2022). Two cosmopolitanism events driven by different extreme paleoclimate regimes. Global and Planetary Change, 216, 103899. https://doi.org/10.1016/j.gloplacha.2022.103899

Zhou M., Dai S., Wang Z., Spiro B.F., Vengosh A., French D., Graham I.T., Zhao F., Zuo J. & Zhao J. (2022). The Sr isotope signature of Wuchiapingian semi-anthracites from Chongqing, southwestern China: Indication for hydrothermal effects. Gondwana Research, 103, 522-541. https://doi.org/10.1016/j.gr.2021.11.007

Palaeoecology and palaeoenvironments

Aggarwal N., Mathews R.P., Ansari A.H., Thakur B. & Agrawal S. (2022). Palaeoenvironmental reconstruction for the Permian (lower Gondwana) succession of the Godavari Valley Coalfield in southern India based on a combined palynofacies, carbon isotope, and biomarker study. Journal of Palaeogeography, 11(1), 123-144. https://doi.org/10.1016/j.jop.2021.07.001

Antunes G.C., Warren L.V., Okubo J., Fairchild T.R., Varejão F.G., Uhlein G.J., Inglez L., Poiré D.G., Bahniuk A.M. & Simões M.G. (2022). The rise and fall of the giant stromatolites of the Lower Permian Irati Formation (Paraná Basin, Brazil): A multi-proxy based paleoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 606, 111246. https://doi.org/10.1016/j.palaeo.2022.111246

Gulbranson E.L., Sheldon N.D., Montañez I.P., Tabor N.J. & McIntosh J.A. (2022). Late Permian soil-forming paleoenvironments on Gondwana: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 586, 110762. https://doi.org/10.1016/j.palaeo.2021.110762

Jones F.H., dos Santos Scherer C.M. & Kifumbi C. (2022). Lower Permian aeolian dunes surrounding lakes in Gondwana: Insights on depositional dynamics, cyclicity pattern and climatic control from the Parnaiba basin (Brazil). Journal of South American Earth Sciences, 120, 104058. https://doi.org/10.1016/j.jsames.2022.104058

Liu D., Fan Q., Zhang C., Gao Y., Du W., Song Y., Zhang Z., Luo Q., Jiang Z. & Huang Z. (2022). Paleoenvironment evolution of the Permian Lucaogou Formation in the southern Junggar Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 603, 111198. https://doi.org/10.1016/j.palaeo.2022.111198

Marchetti L., Forte G., Kustatscher E., DiMichele W.A., Lucas S.G., Roghi G., Juncal M.A., Hartkopf-Frӧder C., Krainer K., Morelli C. & Ronchi A. (2022). The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian. Earth-Science Reviews, 226, 103922. https://doi.org/10.1016/j.earscirev.2022.103922

Matamales-Andreu R., Mujal E., Dinarès-Turell J., Kustatscher E., Roghi G., Oms O., Galobart À. & Fortuny J. (2022). Early–middle Permian ecosystems of equatorial Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian of Mallorca (Balearic Islands, western Mediterranean). Earth-Science Reviews, 228, 103948. https://doi.org/10.1016/j.earscirev.2022.103948

Moreau J.D. & Gand G. (2022). New data on the Permian ecosystem of the Rodez Basin: ichnofauna (traces of protostomians, tetrapods and fishes), jellyfishes and plants from Banassac-Canilhac (Lozère, southern France). Geodiversitas, 44(31), 975-987. https://doi.org/10.5252/geodiversitas2022v44a31

Moreau J.D., Michelin A., Fara E., Gand G., Galtier J., Puech G. & Fouché S. (2022). Ichnofossils and body fossils from the Permian of the Sorgue Valley (Saint-Affrique Basin, southern France): palaeoenvironmental implications. Historical Biology, 1-14. https://doi.org/10.1080/08912963.2022.2148205

Prevec R., Nel A., Day M.O., Muir R.A., Matiwane A., Kirkaldy A.P., Moyo S., Staniczek A., Cariglino B., Maseko Z., Kom N., Rubidge B.S., Garrouste R., Holland A. & Barber-James H.M. (2022). South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail. Communications biology, 5(1), 1-14. https://doi.org/10.1038/s42003-022-04132-y

Udchachon M., Thassanapak H., Burrett C. & Feng Q. (2022). The boundary between the Inthanon Zone (Palaeotropics) and the Gondwana-derived Sibumasu Terrane, northwest Thailand—evidence from Permo-Triassic limestones and cherts. Palaeobiodiversity and Palaeoenvironments, 102, 383-418. https://doi.org/10.1007/s12549-021-00508-w

Yang F., Sun Y.D., Frings P.J., Luo L., Wang L.N., Huang Y.F., Wang T., Müller J. & Xie S.C. (2022). Collapse of Late Permian chert factories in the equatorial Tethys and the nature of the Early Triassic chert gap. Earth and Planetary Science Letters, 600, 117861. https://doi.org/10.1016/j.epsl.2022.117861

End-Permian extinction

Chen Z.Q., Harper D.A., Grasby S. & Zhang L. (2022). Catastrophic event sequences across the Permian-Triassic boundary in the ocean and on land. Global and Planetary Change, 103890. https://doi.org/10.1016/j.gloplacha.2022.103890

Chen Z.Q., Fang Y., Wignall P.B., Guo Z., Wu S., Liu Z., Wang R., Huang Y. & Feng X. (2022). Microbial blooms triggered pyrite framboid enrichment and oxygen depletion in carbonate platforms immediately after the latest Permian extinction. Geophysical Research Letters, 49(7), e2021GL096998. https://doi.org/10.1029/2021GL096998

Dal Corso J., Song H., Callegaro S., Chu D., Sun Y., Hilton J., Grasby S.E., Joachimski M.M. & Wignall P.B. (2022). Environmental crises at the Permian–Triassic mass extinction. Nature Reviews Earth & Environment, 3(3), 197-214. https://doi.org/10.1038/s43017-021-00259-4

Fielding C.R., Frank T.D., Savatic K., Mays C., McLoughlin S., Vajda V. & Nicoll R.S. (2022). Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 594, 110936. https://doi.org/10.1016/j.palaeo.2022.110936

Foster W.J., Ayzel G., Münchmeyer J., Rettelbach T., Kitzmann N.H., Isson T.T., Mutti M. & Aberhan M. (2022). Machine learning identifies ecological selectivity patterns across the end-Permian mass extinction. Paleobiology, 48(3), 357-371. https://doi.org/10.1017/pab.2022.1

Foster W.J., Hirtz J.A., Farrell C., Reistroffer M., Twitchett R.J. & Martindale R.C. (2022). Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction. Scientific Reports, 12(1), 1202. https://doi.org/10.1038/s41598-022-04991-9

Gastaldo R.A., Neveling J., Geissman J.W., Kamo S.L. & Looy C.V. (2022). A tale of two Tweefonteins: What physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bulletin, 134(3-4), 691-721. https://doi.org/10.1130/B35830.1

Ge Y. & Bond D.P. (2022). Two deep marine oxygenation events during the Permian-Triassic boundary interval in South China: Relationship with ocean circulation and marine primary productivity. Earth-Science Reviews, 104220. https://doi.org/10.1016/j.earscirev.2022.104220

Garbelli C., Cipriani A., Brand U., Lugli F. & Posenato R. (2022). Strontium isotope stratigraphic insights on the end-Permian mass extinction and the Permian-Triassic boundary in the Dolomites (Italy). Chemical Geology, 120946. https://doi.org/10.1016/j.chemgeo.2022.120946

Mays C. & McLoughlin S. (2022). End-Permian burnout: The role of Permian–Triassic wildfires in extinction, carbon cycling, and environmental change in eastern Gondwana. Palaios, 37(6), 292-317. https://doi.org/10.2110/palo.2021.051

Shen J., Zhang Y.G., Yang H., Xie S. & Pearson A. (2022). Early and late phases of the Permian–Triassic mass extinction marked by different atmospheric CO2 regimes. Nature Geoscience, 15(10), 839-844. https://doi.org/10.1038/s41561-022-01034-w

Palaeogeography and tectonics

Cheng J.B., Li Y.L., Li S., Xiao S.Q., Bi W.J. & Zou Y. (2022). Reconstruction of the South Qiangtang–Zhongba–Tethyan Himalaya continental margin system along the northern Indian Plate: Insights from the paleobiogeography of the Zhongba microterrane. Journal of Asian Earth Sciences, 240, 105376. https://doi.org/10.1016/j.jseaes.2022.105376

Falco J.I., Hauser N., Scivetti N., Reimold W.U. & Folguera A. (2022). The origin of Patagonia: insights from Permian to Middle Triassic magmatism of the North Patagonian Massif. Geological Magazine, 159(9), 1490-1512. https://doi.org/10.1017/S0016756822000450

Joffe A., Jackson C.A.L. & Pichel L.M. (2022). Syn‐Depositional Halokinesis in the Zechstein Supergroup (Lopingian) Controls Triassic Minibasin Genesis and Location. Basin Research. https://doi.org/10.1111/bre.12735

Muhtar M.N., Wu C., Brzozowski M.J., Lei R., Wang M. & Xiao W. (2022). Permian ridge subduction-related magmatism in the Eastern Tianshan: Implications for the evolution of the southern Altaids. Lithos, 428, 106815. https://doi.org/10.1016/j.lithos.2022.106815

Tang W., Wang X., Guo X., He W., Tang Y., Pe-Piper G., Piper D.J.W., Guo Z., Cheng F., Li W. & Zhang Y. (2022). Late Carboniferous back-arc rifting in Junggar Basin, NW China: implication for the rapid continental growth in accretionary orogens. International Journal of Earth Sciences, 111(8), 2493-2518. https://doi.org/10.1007/s00531-022-02163-8

Tian H., Fan M., Victor V., Chamberlain K., Waite L., Stern R.J. & Loocke M. (2022). Rapid early Permian tectonic reorganization of Laurentia’s plate margins: Evidence from volcanic tuffs in the Permian Basin, USA. Gondwana Research, 111, 76-94. https://doi.org/10.1016/j.gr.2022.07.003

Vertebrate palaeontology (excluding conodonts)

Argyriou T., Giles S. & Matt Friedman M. (2022). A Permian fish reveals widespread distribution of neopterygian-like jaw suspension. eLife,11, e58433. https://doi.org/10.7554/eLife.58433

Bakaev A.S. (2022). On the revision of the Permian ray-finned fishes of European Russia. Part 1. Paleontological Journal, 56(5), 564-573. https://doi.org/10.1134/S0031030122050045

Brocklehurst N., Ford D.P. & Benson R.B. (2022). Early origins of divergent patterns of morphological evolution on the mammal and reptile stem-lineages. Systematic Biology, 71(5), 1195-1209. https://doi.org/10.1093/sysbio/syac020

Buffa V., Frey E., Steyer J.S. & Laurin M. (2022). The postcranial skeleton of the gliding reptile Coelurosauravus elivensis Piveteau, 1926 (Diapsida, Weigeltisauridae) from the late Permian Of Madagascar. Journal of Vertebrate Paleontology, 42(1), e2108713. https://doi.org/10.1080/02724634.2022.2108713

Laurin M. & Hook R.W. (2022). The age of North America’s youngest Paleozoic continental vertebrates: a review of data from the Middle Permian Pease River (Texas) and El Reno (Oklahoma) Groups. Bulletin de la Société Géologique de France, 193(1). https://doi.org/10.1051/bsgf/2022007

Liu J. & Abdala F. (2022). The emblematic South African therocephalian Euchambersia in China: a new link in the dispersal of late Permian vertebrates across Pangea. Biology Letters, 18(7), 20220222. https://doi.org/10.1098/rsbl.2022.0222

Liu J. & Yang W. (2022). A gorgonopsian from the Wutonggou Formation (Changhsingian, Permian) of Turpan Basin, Xinjiang, China. Palaeoworld, 31(3), 383-388. https://doi.org/10.1016/j.palwor.2022.04.004

Maho T., Maho S., Scott D. & Reisz R.R. (2022). Permian hypercarnivore suggests dental complexity among early amniotes. Nature communications, 13(1), 1-10. https://doi.org/10.1038/s41467-022-32621-5

Marchetti L., Logghe A., Mujal E., Barrier P., Montenat C., Nel A., Pouillon L.M., Garrouste R. & Steyer J.S. (2022). Vertebrate tracks from the Permian of Gonfaron (Provence, Southern France) and their implications for the late Capitanian terrestrial extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 599, 111043. https://doi.org/10.1016/j.palaeo.2022.111043

McMenamin M.A. (2022). Permodontodus waurikensis n. gen. n. sp., an Unusual Osteichthyan from Permian Oklahoma, USA. Zootaxa, 5188(2), 121-132. https://doi.org/10.11646/zootaxa.5188.2.2

Mooney E.D., Maho T., Bevitt J.J. & Reisz R.R. (2022). An intriguing new diapsid reptile with evidence of mandibulo-dental pathology from the early Permian of Oklahoma revealed by neutron tomography. Plos one, 17(11), e0276772. https://doi.org/10.1371/journal.pone.0276772

Richter M., Cisneros J., Kammerer C.F., Pardo J., Marsicano C.A., Fröbisch J. & Angielczyk K.D. (2022). Deep-scaled fish (Osteichthyes: Actinopterygii) from the lower Permian (Cisuralian) lacustrine deposits of the Parnaíba Basin, NE Brazil. Journal of African Earth Sciences, 194, 104639. https://doi.org/10.1016/j.jafrearsci.2022.104639

Schoch, R., & Sues, H. (2022). The dissorophoid temnospondyl Parioxys ferricolus from the early Permian (Cisuralian) of Texas. Journal of Paleontology, 96(4), 950-960. https://doi.org/10.1017/jpa.2022.10

Shishkin M.A. (2022). Disturbance of Organizational Equilibrium during the Change of Ancient Tetrapod Communities: Its Manifestations at the Middle–Late Permian Transition. Paleontological Journal, 56(3), 237-246. https://doi.org/10.1134/S0031030122030170

Werneburg R., Witzmann F., Schneider J.W. & Rößler R. (2022). A new basal zatracheid temnospondyl from the early Permian Chemnitz Fossil Lagerstätte, central-east Germany. PalZ, 1-24. https://doi.org/10.1007/s12542-022-00624-8

Werneburg R., Spindler F., Falconnet J., Steyer J.S., Vianey-Liaud M. & Schneider J.W. (2022). A new caseid synapsid from the Permian (Guadalupian) of the Lodève basin (Occitanie, France). Palaeovertebrata, 45(2), e2. http://dx.doi.org/10.18563/pv.45.2.e2

Conodonts, foraminifera, radiolarians, algae and microbes

Afanasieva M.S., Chernykh V.V., Sungatullina G.M., Sungatullin R.K. & Zbukova D.V. (2022). Radiolarians, Conodonts, and Palynomorphs from the Sakmarian–Artinskian Boundary Beds (Lower Permian) in the Dal’ny Tulkas Section, South Urals, Russia. Paleontological Journal, 56(9), 975-1025. https://doi.org/10.1134/S0031030122090027

Chen A.F., Zhang Y., Yuan D.X., Wu H.T., Dou J. & Liu J.Q. (2022). Upper Changhsingian to lower Olenekian conodont successions from the Bozhou section, northern Guizhou Province, southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 599, 111054. https://doi.org/10.1016/j.palaeo.2022.111054

Filimonova T.V. & Isakova T.N. (2022). New species of small foraminifers from the Mechetlino Quarry section (Southern Urals, Russia): a potential candidate for the GSSP of the lower boundary of the Global Kungurian Stage. PalZ, 96(3), 557-573. https://doi.org/10.1007/s12542-021-00585-4

Huang H., Jin X. & Shi Y. (2022). Distribution pattern of Middle Permian fusulinids in the Lhasa Block, Tibet and their paleogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 586, 110780. https://doi.org/10.1016/j.palaeo.2021.110780

Ju Q., Zhang Y.C., Qiao F. & Xu H.P. (2022). First discovery of Wuchiapingian (Late Permian) foraminiferal fauna from the Zhari Namco area, central Lhasa Block, Tibet, and their palaeogeographic implications. Geological Journal, 57(7), 2564-2580. https://doi.org/10.1002/gj.4428

Ju Q., Zhang Y.C., Yuan D.X., Qiao F., Xu H.P., Zhang H., Zheng Q.F., Luo M., Qie W.K., Zhai Q.G., Zhang Y.J. & Shen S.Z. (2022). Permian foraminifers from the exotic limestone blocks within the central Qiangtang Metamorphic Belt, Tibet and their geological implications. Journal of Asian Earth Sciences, 239, 105426. https://doi.org/10.1016/j.jseaes.2022.105426

Sashida K., Ito T., Salyapongse S. & Putthapiban P. (2022). Permian and Triassic radiolarians from chert breccia in the Nong Prue area, western Thailand: its origin and depositional setting in the Paleotethys. Palaeoworld, 31(1), 103-115. https://doi.org/10.1016/j.palwor.2021.01.006

Ueno K. (2022). Thailandina and Neothailandina and their family Thailandinidae salvaged: a valid taxonomic group of peculiar Permian fusuline Foraminifera. Journal of Paleontology, 96(2), 485-490. https://doi.org/10.1017/jpa.2021.88

Xiao Y.F., Wang K.Y., He W.H., Suzuki N., Zhang K.X., Yang T.L. & Wu S.B. (2022). Changhsingian (Lopingian, Permian) radiolarian paleobiogeography on and around the Yangtze Platform. Palaeoworld. https://doi.org/10.1016/j.palwor.2022.07.001

Yuan D.X., Zhang Y.C., Qiao F., Xu H.P., Ju Q. & Shen S.Z. (2022). A new late Kungurian (Cisuralian, Permian) conodont and fusuline fauna from the South Qiangtang Block in Tibet and their implications for correlation and paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 589, 110822. https://doi.org/10.1016/j.palaeo.2021.110822

Zheng J., Jin X., Huang H. & Yan Z. (2022). Late Permian radiolarians from the ‘Middle‐Upper Devonian’in the Paqiu area of the Changning‐Menglian Belt, western Yunnan, China and their bearings on analysing the remains of the Palaeo‐Tethys. Geological Journal. https://doi.org/10.1002/gj.4639

Brachiopods, bivalves and other invertebrates

Aristov D.S. & Rasnitsyn A.P. New Blattinopsidae (Insecta: Blattinopsida) from the Middle Permian of European Russia. Paleontological Journal, 56, 187–193 (2022). https://doi.org/10.1134/S0031030122020034

Aristov D.S., Rasnitsyn A.P. & Naugolnykh S.V. (2022). A Review of Blattinopsida (Insecta) and Flora of Latest Early and Early Middle Permian in European Russia. Paleontological Journal, 56(5), 548-558. https://doi.org/10.1134/S0031030122050033

Bicknell R. D. C., Naugolnykh S. V. & McKenzie S. C. 2022. — On Paleolimulus from the Mazon Creek Konservat-Lagerstätte. Comptes Rendus Palevol 21(15): 303-322. https://doi.org/10.5852/cr-palevol2022v21a15

Boudinot B.E., Yan E.V., Prokop J., Luo X.Z. & Beutel R.G. (2022). Permian parallelisms: Reanalysis of †Tshekardocoleidae sheds light on the earliest evolution of the Coleoptera. Systematic Entomology, 1-28. https://doi.org/10.1111/syen.12562

Cisterna G.A. & Sterren A.F. (2022). Brachiopod zonation in the late Paleozoic sequences of Argentina and its correlation with other South American basins. Journal of South American Earth Sciences, 117, 103845. https://doi.org/10.1016/j.jsames.2022.103845

Day M.O., Ramezani J., Frazer R.E. & Rubidge B.S. (2022). U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa. Journal of African Earth Sciences, 186, 104435. https://doi.org/10.1016/j.jafrearsci.2021.104435

Mironenko A.A. & Naugolnykh S.V. (2022). Lower and upper jaws of the Early Permian goniatitid ammonoids. Lethaia, 55(4), 1-9. https://doi.org/10.18261/let.55.4.2

Mukherjee D., Mondal S., Roy A., Iangrai B. & Sinha S. (2022). Palaeobiogeographic analysis of late Permian marine invertebrates from the Arunachal Himalaya, NE India. Palaeobiodiversity and Palaeoenvironments, 1-13. https://doi.org/10.1007/s12549-022-00522-6

Naugolnykh S.V. & Bicknell R.D. (2022). Ecology, morphology and ontogeny of Paleolimulus kunguricus—a horseshoe crab from the Kungurian (Cisuralian) of the Cis-Urals, Russia. Lethaia, 55(1), 1-13. https://doi.org/10.1111/let.12451

Naugolnykha S.V., Ivanovb A.V., Uliakhind A.V. & Novikovd I.V. (2022). Paleoecological and Depositional Environment of Permian Copper-Bearing Sandstone Fossil Plants and Tetrapod Localities: Records from Bashkortostan and Kargalka River Basin, Orenburg Region, Russia. Paleontological Journal, 56(11), 1538-1555. https://doi.org/10.1134/S0031030122110120

Ozhgibesov V. (2022). Permian Flexifenestella from Perm Region (Bryozoa). In: Rocha A. & Isaeva E. (eds) Science and Global Challenges of the 21st Century - Science and Technology. Perm Forum 2021. Lecture Notes in Networks and Systems, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-89477-1_31

Shcherbakov D.E., Tzetlin A.B. & Zhuravlev A.Y. (2022). Boreognathus pogorevichi, a remarkable new polychaete annelid from the lower Permian of the Pechora Basin, Russia. Papers in Palaeontology, 8(5), e1461. https://doi.org/10.1002/spp2.1461

Verde M., Netto R.G., Azurica D., Lavina E.L. & Di Pasquo M. (2022). Revisiting the supposed oldest bilaterian trace fossils from Uruguay: Late Paleozoic, not Ediacaran. Palaeogeography, Palaeoclimatology, Palaeoecology, 602, 111158. https://doi.org/10.1016/j.palaeo.2022.111158

Viaretti M., Heward, A.P., Gementi A. & Angiolini L. (2022). Upper Cisuralian-lower Guadalupian brachiopods from the Qarari Unit, Batain plain, northeast Oman: systematics, palaeoecology and correlation. Rivista Italiana di Paleontologia e Stratigrafia, 128(3), 643-694. https://doi.org/10.54103/2039-4942/17732

Wu H., Zhang Y., Stubbs T.L., Chen A., Zhai P. & Sun Y. (2022). Wuchiapingian (Lopingian, late Permian) brachiopod fauna from Guangdong Province, southeastern China: systematics and contribution to the Lopingian recovery. Journal of Paleontology, 1-28. https://doi.org/10.1017/jpa.2022.78

Palaeobotany and Palynology

Blomenkemper P., Kerp H., Abdalla Abu Hamad & Bomfleur B. (2022). Rhabdotaenia – a typical Gondwanan leaf from the upper Permian of Jordan. Alcheringa, 46, 85-93. https://doi.org/10.1080/03115518.2022.2028899

Cai Y.F., Zhang H., Feng Z., Gou X.D., Byambajav U., Zhang Y.C., Yuan D.X., Qie W.K., Xu H.P., Cao C.Q., Yarinphil A. & Shen S.Z. (2022). A new conifer stem, Ductoagathoxylon tsaaganensis, from the Upper Permian of the South Gobi Basin, Mongolia and its palaeoclimatic and palaeoecological implications. Review of Palaeobotany and Palynology, 304, 104719. https://doi.org/10.1016/j.revpalbo.2022.104719

da Conceição D.M., Júnior M.G.E., Iannuzzi R. & Cisneros J.C. (2022). Two new petrified gymnosperms with solenoid piths from the Pedra de Fogo Formation, Permian of Maranhão, Brazil. Review of Palaeobotany and Palynology, 299, 104622. https://doi.org/10.1016/j.revpalbo.2022.104622

Di Nardo J.E., Martínez M.A. & di Pasquo M. (2022). Lancettopsis harringtonii sp. nov, a new acritarch and related morphotypes from the Sauce Grande Formation of Pennsylvanian-Cisuralian age, Claromecó Basin, Argentina. Review of Palaeobotany and Palynology, 306, 104739. https://doi.org/10.1016/j.revpalbo.2022.104739

Gibson M.E. (2022). First report of fungal palynomorphs from the Zechstein Group (Lopingian): implications for the stratigraphic completeness of the Earth’s Paleozoic fungal record. Palaios, 37(6), 318-329. https://doi.org/10.2110/palo.2021.064

Gomankov A.V. (2022). Cycads in the Permian of thе Subangara Region. Paleontological Journal, 56(3), 317-326. https://doi.org/10.1134/S0031030122030066

Ji X.K., Guo X.W., Yang N., Bek J., Nie T., Lu H.N. & Xu H.H. (2022). The palynology of the Permian succession in the CSDP-2 Well, South Yellow Sea, China. Palynology, 2142860. https://doi.org/10.1080/01916122.2022.2142860

Ma F.J., Sun B.N., Liu S., Zhou G.H., Ling C.C., Hu X.P., Han D. & Wang Q.J. (2022). A new gigantopterid taxon Paragigantopteris qingloongensis gen. et sp. nov. from the Permian (Wuchiapingian) of southwestern China: Taxonomic and biogeographic implications. Review of Palaeobotany and Palynology, 300, 104625. https://doi.org/10.1016/j.revpalbo.2022.104625

Shu W., Tong J., Yu J., Hilton J., Benton M.J., Shi X., Diez J.B., Wignall P.B., Chu D., Tian L., Yi Z. & Mao Y. (2022). Permian− Middle Triassic floral succession in North China and implications for the great transition of continental ecosystems. GSA Bulletin. https://doi.org/10.1130/B36316.1

Spiekermann R., Jasper A., Pozzebon-Silva Â., Carniere J.S., Benício J.R.W., Guerra-Sommer M. & Uhl D. (2022). Small but not trivial: Nothostigma sepeensis sp. nov., a lycopsid from the Cisuralian (early Permian) of the Paraná basin, Brazil. Journal of South American Earth Sciences, 104188. https://doi.org/10.1016/j.jsames.2022.104188

Sui Q., Lin Y., McLoughlin S., Yang S.L. & Feng Z. (2022). A new lycophyte megaspore, Paxillitriletes permicus, from the upper Permian of Southwest China. Review of Palaeobotany and Palynology, 304, 104722. https://doi.org/10.1016/j.revpalbo.2022.104722

Wang X., Yang Y., Hua Y., Sun B. & Miao Y. (2023). Hexicladia, a new genus of the Cisuralian conifer from Hexi Corridor, China. Review of Palaeobotany and Palynology, 308, 104789. https://doi.org/10.1016/j.revpalbo.2022.104789

Xu Z., Hilton J., Yu J., Wignall P.B., Yin H., Xue Q., Ran W., Li H., Shen J. & Meng F. (2022). End Permian to Middle Triassic plant species richness and abundance patterns in South China: Coevolution of plants and the environment through the Permian–Triassic transition. Earth-Science Reviews, 104136. https://doi.org/10.1016/j.earscirev.2022.104136

Yang J.Y., Wei H.B., Gou X.D., Yang S.L. & Feng Z. (2022). Leaf anatomy of Ningxiaites specialis from the Lopingian of Northwest China. Review of Palaeobotany and Palynology, 300, 104632. https://doi.org/10.1016/j.revpalbo.2022.104632

Yu J., Shi X., Xu Z., Li H. & Lu Z. (2022). Plant and Environment Co-evolution in Permian-Triassic Transition. In Plants and Palynomorphs around the Permian-Triassic Boundary of South China (pp. 109-136). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1492-8_8

Resources

Lu Q., Qin S., Bai H., Wang W., Qi D.E., He X. & Zhang B. (2022). Geochemistry of rare earth elements and yttrium in Late Permian coals from the Zhongliangshan coalfield, southwestern China. Frontiers of Earth Science, 1-21. https://doi.org/10.1007/s11707-022-1018-x

Ouirghi K., El Asmi A.M., Mohamed A.B.H., Saidi M. & Romero-Sarmiento M.F. (2022). Organic geochemical study of Permian series from the Jeffara and Dahar areas (Southern Tunisia): Identification and characterization of a Tunisian Permian source rock. International Journal of Coal Geology, 252, 103943. https://doi.org/10.1016/j.coal.2022.103943

Rashid A., Siddiqui N.A., Ahmed N., Jamil M., EL-Ghali M.A., Ali S.H., Zaidi F.K. & Wahid A. (2022). Field attributes and organic geochemical analysis of shales from early to middle Permian Dohol Formation, Peninsular Malaysia: Implications for hydrocarbon generation potential. Journal of King Saud University-Science, 34(8), 102287. https://doi.org/10.1016/j.jksus.2022.102287

Sowiżdżał A., Machowski G., Krzyżak A., Puskarczyk E., Krakowska-Madejska P. & Chmielowska A. (2022). Petrophysical evaluation of the Lower Permian formation as a potential reservoir for CO2-EGS–Case study from NW Poland. Journal of Cleaner Production, 379, 134768. https://doi.org/10.1016/j.jclepro.2022.134768

Zhang Y., Liao Z., Wu Z., Liu W., Chen A., Cai Y., Liu Y., Yang W. & Wang D. (2022). Climate change controls on extreme organic matter enrichment in Late Permian marine–terrestrial transitional shales in Guizhou, South China. Journal of Petroleum Science and Engineering, 218, 111062. https://doi.org/10.1016/j.petrol.2022.111062

Zhou M.F., Wang Z.C., Zhao W.W., Qi L., Zhao Z., Zhou J., Huang Z. & Chen W.T. (2022). A reconnaissance study of potentially important scandium deposits associated with carbonatite and alkaline igneous complexes of the Permian Emeishan Large Igneous Province, SW China. Journal of Asian Earth Sciences, 236, 105309. https://doi.org/10.1016/j.jseaes.2022.105309